Karbon Nanotüp-Polimer Nanokompozitlerde Çok Boyutlu Modelleme ile Arayüz Özelliklerinin İncelenmesi, sayfa: 503-511

Elif ÖZDEN YENİGÜN

Özet


Bu çalışmada, karbon nanotüp (KNT) takviyeli nanolif üretiminde başarılı sonuçlar veren polistiren-ko-glisidil metakrilat P(St-ko-
GMA) ve polivinil bütral (PVB) gibi iki farklı polimer sisteminde polimer-karbon nanotüp ilişkisi çok boyutlu modelleme ile
moleküler düzeyde incelenmiştir. Sıklıkla takviye elemanı olarak kullanılan KNT’lerin iki farklı boyut mertebesinde veri
aktarımına izin verecek şekilde, önce dağınık partikül dinamiği (DPD) ardından, geri-haritalama ile sağlanan atom detayı esas
alınarak moleküler dinamik (MD) hesaplama yöntemleri ile çok-boyutlu modellenmesi sağlanmıştır. KNT takviyesinin arayüz
yapısına, matris mekanik özelliklerine ve camsı geçiş sıcaklığına olan etkisi iki farklı polimer sisteminde karşılaştırmalı olarak
incelenmiştir. Yapısında aromatik grup bulunan P(St-ko-GMA) polimerlerinin KNT ile π-π etkileşimine girebildiği ve bu çekici
etkileşiminin camsı geçiş sıcaklığı ve mekanik özelliklerin artmasına sebep olduğu görülmüştür. PVB sistemlerinde ise mekanik
artış KNT’lerin kendi mukavim yapısı ile sınırlı kalmıştır.


Anahtar Kelimeler


Çok boyutlu modelleme, karbon nanotüp, polimer nanokompozit, moleküler dinamik, dağınık partikül dinamiği.

Referanslar


Schandler L. S., Brinson L. C. and Sawyer W. G., "Polymer

nanocomposites: a small part of the story", JOM, 59(3): 53-

, (2007).

Beese A. M., Sarkar S., Nair A., Naraghi M., An Z.,

Moravsky A., Loutfy R. O., Buehler M. J., Nguyen S. T.

and Espinosa H. D., "Bio-Inspired carbon nanotubepolymer

composite yarns with hydrogen bond-mediated

lateral ınteractions", ACS Nano, 7(4): 3434-3446, (2013).

Es'haghi Z., Golsefidi M. A., Saify A., Tanha A. A.,

Rezaeifar Z. and Alian-Nezhadi Z., "Carbon nanotube

reinforced hollow fiber solid/liquid phase microextraction:

a novel extraction technique for the measurement of caffeic

acid in echinacea purpurea herbal extracts combined with

high-performance liquid chromatography", Journal of

Chromatography A, 1217(17): 2768-2775, (2010).

Fu S.-Y., Feng X.-Q., Lauke B. and Mai Y.-W., "Effects of

particle size, particle/matrix ınterface adhesion and particle

loading on mechanical properties of particulate-polymer

composites", Composites Part B-Engineering, 39(6): 933-

, (2008).

Imaizumi S., Matsumoto H., Konosu Y., Tsuboi K.,

Minagawa M., Tanioka A., Koziol K. and Windle A., "Topdown

process based on electrospinning, twisting, and

heating for producing one-dimensional carbon nanotube

assembly", ACS Applied Materials & Interfaces, 3(2):

-475, (2011).

Liu Y. J., Nishimura N., Qian D., Adachi N., Otani Y. and

Mokashi V., "A boundary element method for the analysis

of cnt/polymer composites with a cohesive ınterface model

based on molecular dynamics", Engineering Analysis with

Boundary Elements, 32(4): 299-308, (2008).

Lu P. and Hsieh Y.-L., "Multiwalled carbon nanotube

(mwcnt) reinforced cellulose fibers by electrospinning",

ACS Applied Materials & Interfaces, 2(8): 2413-2420,

(2010).

Ma W., Liu L., Zhang Z., Yang R., Liu G., Zhang T., An

X., Yi X., Ren Y., Niu Z., Li J., Dong H., Zhou W., Ajayan

P. M. and Xie S., "High-Strength composite fibers:

realizing true potential of carbon nanotubes in polymer

matrix through continuous reticulate architecture and

molecular level couplings", Nano Letters, 9(8): 2855-2861,

(2009).

Mottaghitalab V., Spinks G. M. and Wallace G. G., "The

influence of carbon nanotubes on mechanical and electrical

properties of polyaniline fibers", Synthetic Metals, 152(1-

: 77-80, (2005).

Odegard G. M., Clancy T. C. and Gates T. S., "Modeling of

the mechanical properties of nanoparticle/polymer

composites", Polymer, 46(2): 553-562, (2005).

Odegard G. M., Gates T. S., Wise K. E., Park C. and Siochi

E. J., "Constitutive modeling of nanotube-reinforced

polymer composites", Composites Science and

Technology, 63(11): 1671-1687, (2003).

Ozden-Yenigun E., Menceloglu Y. Z. ve Papila M.,

"MWCNT/P(St-co-GMA) composite nanofibers of

engineered ınterface chemistry for epoxy matrix

nanocomposites", ACS Applied Materials & Interfaces,

(2): 777-784, (2012).

Ozden E., Menceloglu Y. Z. and Papila M., "Engineering

chemistry of electrospun nanofibers and ınterfaces in

nanocomposites for superior mechanical properties", ACS

Applied Materials & Interfaces, 2(7): 1788-1793, (2010).

Tan H., Jiang L. Y., Huang Y., Liu B. and Hwang K. C.,

"The effect of van der waals-based ınterface cohesive law

on carbon nanotube-reinforced composite materials",

Composites Science and Technology, 67(14): 2941-1946,

(2007).

Wong M., Paramsothy M., Xu X. J., Ren Y., Li S. and Liao

K., "Physical interactions at carbon nanotube-polymer

interface", Polymer, 44(25): 7757-7764, (2003).

Wu X.-F. and Yarin A. L., "Recent progress in ınterfacial

toughening and damage self-healing of polymer composites

based on electrospun and solution-blown nanofibers: an

overview", Journal of Applied Polymer Science, 130(4):

-2237, (2013).

Bhuiyan M. A., Pucha R. V., Worthy J., Karevan M. and

Kalaitzidou K., "Understanding the effect of cnt

characteristics on the tensile modulus of cnt reinforced

polypropylene using finite element analysis",

Computational Materials Science, 79: 368-376, (2013).

Bobaru F. and Silling S. A., "Peridynamic 3D models of

nanofiber networks and carbon nanotube-reinforced

composites", American Institute of Physics Conference

Proceedings, 712: 1565, (2004).

Gates T. S., Odegard G. M., Frankland S. J. V. and Clancy

T. C., "Computational materials: multi-scale modeling and

simulation of nanostructured materials", Composites

Science and Technology, 65(15-16): 2416-2434, (2005).

Valavala P. K. and Odegard G. M., "Modeling techniques

for determination of mechanical properties of polymer

nanocomposites", Reviews on Advanced Materials

Science, 9(1): 34-44, (2005).

Ozden-Yenigun E., Atilgan C. and Elliott J.A., "Multi-scale

modelling of carbon nanotube reinforced crosslinked

interfaces", Computational Materials Science, 129: 279-

, (2017).

Fermeglia M., Maly M., Posocco P. and Pricl S.,

"Multiscale molecular modeling of hybrid organicınorganic

nanocomposites of type I and II", Advances in

Science and Technology, 54: 265-269, (2008).

Li C. Y. and Chou T. W., "Multiscale modeling of carbon

nanotube reinforced polymer composites", Journal of

Nanoscience and Nanotechnology, 3(5): 423-430, (2003).

Li P. J., Wang Q. Z. and Shi S. F., "Differential scheme for

the effective elastic properties of nano-particle composites

with ınterface effect", Computational Materials Science,

(11): 3230-3237, (2011).

Parashar A. and Mertiny P., "Multiscale model to study of

fracture toughening in graphene/polymer nanocomposite",

International Journal of Fracture, 179(1-2): 221-228,

(2013).

Scocchi G., Posocco P., Danani A., Pricl S. and Fermeglia

M., "To the nanoscale, and beyond multiscale molecular

modeling of polymer-clay nanocomposites", Fluid Phase

Equilibria, 261(1-2): 366-374, (2007).

Takeda T., Shindo Y., Narita F. and Mito Y., "Tensile

characterization of carbon nanotube-reinforced polymer

composites at cryogenic temperatures: experiments and

multiscale simulations", Materials Transactions, 50(3):

-445, (2009).

Wang H. W., Zhou H. W., Peng R. D. and Mishnaevsky L.,

"Nanoreinforced polymer composites: 3D fem modeling

KARBON NANOTÜP-POLİMER NANOKOMPOZİTLERDE ÇOK BOYUTLU MODELLEME … Politeknik Dergisi, 2017; 20 (3) : 503-511

with effective ınterface concept", Composites Science and

Technology, 71(7): 980-988, (2011).

Zeng Q. H., Yu A. B. and Lu G. Q., "Multiscale modeling

and simulation of polymer nanocomposites", Progress in

Polymer Science, 33(2): 191-269, (2008).

Ionita M., Ciupina V. and Vasile E., "Influence of different

carbon nanotubes on the mechanical properties of

polyaniline nanocomposite - multiscale molecular

modeling", Journal of Optoelectronics and Advanced

Materials, 13(7-8): 769-775, (2011).

Liu W., Zhang S., Hao L., Yang F., Jiao W., Li X. and

Wang R., "Fabrication of carbon nanotubes/carbon fiber

hybrid fiber in ındustrial scale by sizing process", Applied

Surface Science, 284: 914-920, (2013).

Porter D., "Pragmatic multiscale modelling of bone as a

natural hybrid nanocomposite", Materials Science and

Engineering A-Structural Materials Properties

Microstructure and Processing, 365(1-2): 38-45, (2004).

Pricl S., Posocco P., Fermeglia M., Scocchi G., Danani A.,

Handgraaf J. W. and Fraaije H. G. E. M., "The dark side of

the moon: a multiscale approach to self-assembly of

dendrimers for cancer therapy", Molecular Cancer

Therapeutics, 6(11): C102, (2007).

Scocchi G., Posoccon P., Fermeglia M. and Pricl S.,

"Polymer-clay nanocomposites: a multiscale molecular

modeling approach", Journal of Physical Chemistry B,

(9): 2143-2151, (2007).

Sheng N., Boyce M. C., Parks D. M., Rutledge G. C., Abes

J. I. and Cohen R. E., "Multiscale micromechanical

modeling of polymer/clay nanocomposites and the

effective clay particle", Polymer, 45(2): 487-506, (2004).

Zappalorto M., Salviato M. and Quaresimin M., "A

multiscale model to describe nanocomposite fracture

toughness enhancement by the plastic yielding of

nanovoids", Composites Science and Technology, 72(14):

-1691, (2012).

Groot R. D. and Warren P. B., "Dissipative particle

dynamics: bridging the gap between atomistic and

mesoscopic simulation", Journal of Chemical Physics,

(11): 4423-4435, (1997).

Doruker P. and Mattice W. L., "Reverse mapping of coarsegrained

polyethylene chains from the second nearest

neighbor diamond lattice to an atomistic model in

continuous space", Macromolecules, 30(18): 5520-5526,

(1997).

Ghanbari A., Bohm M. C. and Muller-Plathe F., "A simple

reverse mapping procedure for coarse-grained polymer

models with rigid side groups", Macromolecules, 44(13):

-5526, (2011).

Harmandaris V. A., Adhikari N. P., van der Vegt N. F. A.

and Kremer K., "Hierarchical modeling of polystyrene:

from atomistic to coarse-grained simulations"

Macromolecules, 39(19): 6708-6719, (2006).

Kacar G., Atilgan C. and Ozen A. S., "Mapping and

reverse-mapping of the morphologies for a molecular

understanding of the self-assembly of fluorinated block

copolymers", Journal of Physical Chemistry C, 114(1):

-382, (2010).

Peter C., Delle Site L. and Kremer K., "Classical

simulations from the atomistic to the mesoscale and back:

coarse graining an azobenzene liquid crystal", Soft Matter,

(4): 859-869, (2008).

Peter C. and Kremer K., "Multiscale simulation of soft

matter systems – from the atomistic to the coarse-grained

level and back", Soft Matter, 5: 4357, (2009).

Santangelo G., Di Matteo A., Muller-Plathe F. and Milano

G., "From mesoscale back to atomistic models: a fast

reverse-mapping procedure for vinyl polymer chains",

Journal of Physical Chemistry B,111(11): 2765-2773,

(2007).

Spyriouni T., Tzoumanekas C., Theodorou D., Muller-

Plathe F. and Milano G., "Coarse-grained and reversemapped

united-atom simulations of long-chain atactic

polystyrene melts: structure, thermodynamic properties,

chain conformation, and entanglements", Macromolecules,

(10): 3876-3885, (2007).

Rzepiela A. J., Schafer L. V., Goga N., Risselada H. J., De

Vries A. H. and Marrink S. J., "Software news and update

reconstruction of atomistic details from coarse-grained

structures", Journal of Computational Chemistry, 31(6):

-1343, (2010).

Rittigstein P. and Torkelson J. M., " Polymer–nanoparticle

interfacial interactions in polymer nanocomposites:

confinement effects on glass transition temperature and

suppression of physical aging", J Polym Sci Pol Phys, 44:

-2943, (2006).

Ozden-Yenigun E., Simsek E., Menceloglu Y.Z. and

Atilgan, C., "Molecular basis for solvent dependent

morphologies observed on electrosprayed surfaces",

Physical Chemistry Chemical Physics, 15: 17862-17872,

(2013).

Gotovac S., Honda H., Hattori Y., Takahashi K., Kanoh H.

and Kaneko K., "Effect of nanoscale curvature of singlewalled

carbon nanotubes on adsorption of polycyclic

aromatic hydrocarbons", Nano Letters, 7: 583-587, (2007).

Zhao J., Lu J.P., Han J. and Yang C-K., "Noncovalent

functionalization of carbon nanotubes by aromatic organic

molecules", Appl Phys Lett., 82: 3746-3748, (2003).

Jahangiri S. and Ozden-Yenigun E. "The stability and

dispersion of carbon nanotube-polymer solutions: a

molecular dynamics study", Journal of Industrial Textiles

(basımda), DOI: 10.1177/1528083717702006, (2017).

Lu J. P., "Elastic properties of single and multilayered

nanotubes", J Phys Chem Solids, 58: 1649-1652, (1997).


Tam Metin: PDF

Refback'ler

  • Şu halde refbacks yoktur.



Politeknik Dergisi © 2014

P-ISSN 1302-0900    E-ISSN 2147-9429