An Investigation of Injection Parameters of Ti-6Al-7NbFabricated by Powder Injection Molding, pages: 393-399

Mehmet SUBAŞI, Asghar SAFARIAN, Çetin KARATAŞ

Özet


In this study, the optimized injection parameters for a feedstock obtained by mixing the powder of Ti-6Al-7Nb and 31wt% binder system (comprised of high-density polyethylene, Polypropylene, PEG 20000, paraffin wax and stearic acid), were determined. In order to investigate the fabrication of a component, flow rate, injection pressure, holding pressure, injection temperature and mold temperature were studied at three levels to obtain the optimum injection parameters. It was proven that for feedstock comprised of 69wt% Ti-6Al-7Nb powder, the suitable set of injection parameters were as follows: flow rate of 20 cm3/s, injection pressure of 1300 bar, holding pressure of 60%, injection temperature of 140 °C and mold temperature of 60 °C. At the end of the experiments the tensile strength of specimens fabricated with optimum parameters, were as high as 631 MPa.


Anahtar Kelimeler


Ti-6Al-7Nb, Powder Injection Molding, Injection, Sintering

Referanslar


Lee W.-S.,Chen C.-W., "Dynamic mechanical properties and microstructure of Ti–6Al–7Nb biomedical alloy as function of strain rate", Materials Science and Technology, 29(9): 1055-1064, (2013).

Biesiekierski A., Wang J., Abdel-Hady Gepreel M. and Wen C.,"A new look at biomedical Ti-based shape memory alloys",Acta Biomaterialia,8(5): 1661-1669, (2012).

Niinomi M.,"Recent metallic materials for biomedical application", Metallurgical and Materials Transactions A, 33(3): 477-486, (2002).

Wei Q.,Wang L., Fu Y., Qin J., Lu W. and Zhang D.,"Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy", Materials & Design, 32(5): 2934-2939, (2011).

Ramarolahy A., Castany P., Prima F., Laheurte P., Péron I. and Gloriant T.,"Microstructure and mechanical behavior of superelastic Ti–24Nb–0.5O and Ti–24Nb–0.5N biomedical alloys", Journal of the Mechanical Behavior of Biomedical Materials, 9: 83-90, (2012).

Tane M., Nakano T., Kuramoto S., Hara M., Niinomi M., Takesue N., Yano T. and Nakajima H.,"Low Young’s modulus in Ti–Nb–Ta–Zr–O alloys: Cold working and oxygen effects", Acta Materialia, 59(18): 6975-6988, (2011).

Zhao D.,Chang K., Ebel T., Qian M., Willumeit R., Yan M. and Pyczak F., "Microstructure and mechanical behavior of metal injection molded Ti–Nb binary alloys as biomedical material", Journal of the Mechanical Behavior of Biomedical Materials, 28: 171-182, (2013).

Imam M.A., Froes F.H. and Housley K.L., "Kirk-Othmer Encyclopedia of Chemical Technology", New York, Wiley, (2010).

Ni X.-L., Yin H.-Q., Liu L., Yi S.-J. and Qu X.-H., "Injection molding and debinding of micro gears fabricated by micro powder injection molding", International Journal of Minerals, Metallurgy, and Materials, 20(1): 82-87, (2013).

Yi S.-J., Yin H.-Q., Chen K., Khan D.-F., Zheng Q.-J. and Qu X.-H., "Microstructure and properties of nano-TiN modified Ti(C,N)-based cermets fabricated by powder injection molding and die pressing", International Journal of Minerals, Metallurgy, and Materials, 20(11): 1115-1121, (2013).

Ahn S., Park S. J., Lee S., Atre S. V. and German R. M., "Effect of powders and binders on material properties and molding parameters in iron and stainless steel powder injection molding process", Powder Technology, 193(2): 162-169, (2009).

Karataş Ç., Sözen A., Arcaklioglu E. and Erguney S., "Investigation of mouldability for feedstocks used powder injection moulding", Materials & Design, 29(9): 1713-1724, (2008).

Chen L.-J., Li T., Li Y.-M., He H., Hu Y.-H., "Porous titanium implants fabricated by metal injection molding", Transactions of Nonferrous Metals Society of China, 19(5): 1174-1179, (2009).

Chen G. , Cao P., Wen G. and Edmonds N.,"Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding", Materials Chemistry and Physics, 139(2–3): 557-565, (2013).

German R.,"Progress in Titanium Metal Powder Injection Molding", Materials, 6(8): 3641-3662, (2013).

Limberg W., Ebel T., Pyczak F., Oehring M. and Schimansky F. P., "Influence of the sintering atmosphere on the tensile properties of MIM-processed Ti 45Al 5Nb 0.2B 0.2C", Materials Science and Engineering: A, 552: 323-329, (2012).

Nor N. H. M., Muhamad N., Ihsan A. K. A. M. and Jamaludin K. R., "Sintering Parameter Optimization of Ti-6Al-4V Metal Injection Molding for Highest Strength Using Palm Stearin Binder", Procedia Engineering,. 68: 359-364, (2013).

Obasi G. C., Ferri O. M., Ebel T. and Bormann R.,"Influence of processing parameters on mechanical properties of Ti–6Al–4V alloy fabricated by MIM", Materials Science and Engineering: A, 527(16-17): 3929-3935, (2010).

Bidaux J.-E., Closuit C.,Rodriguez-Arbaizar M. and Carreño-Morelli E., "Metal injection moulding of Ti-Nb alloys for implant application", European Cells and Materials, 22(4): 32, (2011).

Setasuwon P., Bunchavimonchet A. and Danchaivijit S., "The effects of binder components in wax/oil systems for metal injection molding", Journal of Materials Processing Technology, 196(1–3): 94-100, (2008).

Yang W.-W., Yang K.-Y. and Hon M.-H., "Effects of PEG molecular weights on rheological behavior of alumina injection molding feedstocks", Materials Chemistry and Physics, 78(2): 416-424, (2003).

MPFI standart 50, "Metal Enjeksiyon Kalıplamada Bağlayıcı Giderme Ve Sinterlemede Çekme Testi Specimenleri İçin Metot", Metal Powder Industries Federation, (1992).

Karataş Ç.,"Toz Enjeksiyon Kalıplamada Karışımın Reolojisi", Doktora tezi, Fen Bilimleri Enstitüsü, Gazi Universitesi, Ankara, (1997).

Zhang H., He X., Qu X. and Zhao L., "Microstructure and mechanical properties of high Nb containing TiAl alloy parts fabricated by metal injection molding", Materials Science and Engineering: A,526(1–2): 31-37, (2009).

Gerling R., Schimansky F.P., "Prospects for metal injection moulding using a gamma titanium aluminide based alloy powder", Materials Science and Engineering: A, 329: 45-49, (2002).

Ferri O.M.,Ebel T. and Bormann R., "Influence of surface quality and porosity on fatigue behaviour of Ti–6Al–4V components processed by MIM", Materials Science and Engineering: A, 527(7–8): 1800-1805, (2010).

Subaşı M., "The Investigation Of Optimum Parameters To Be Used In Production Of Titanium Parts With Powder Injection Molding", PhD Thesis , Gazi Universty, Graduate School of Natural and Applied Sciences, (2014).

Lee S.W., Ahn S., Whang C.J., Park S.J., Atre S.V., Kim J. and German R.M., "Effects of process parameters in plastic, metal, and ceramic injection molding processes", Korea-Australia Rheology Journal, 23(3): 127-138, (2011).

Luo T.G., Qu X. H., Qin M. L. and Ouyang M. L., "Dimension precision of metal injection molded pure tungsten", International Journal of Refractory Metals and Hard Materials, 27(3): 615-620, (2009).

Shibo G., Xuanhui Q., Xinbo H., Ting Z. and Bohua D., "Powder injection molding of Ti–6Al–4V alloy",Journal of Materials Processing Technology, 173(3): 310-314, (2006).

Sidambe A.T.,Figueroa I.A., Hamilton H.G.C. and Todd L., "Taguchi optimization of MIM titanium sintering", International Journal of Powder Metallurgy, 47(6): 21-27, (2011).

Asghar S., Karataş Ç.,"The impact of injection velocity on the defects in thick components fabricated by inserted metal injection molding", International Journal of Materials Research, 106(6): 647-650, (2015).

Fang W., He X., Zhang R., Yang S. and Qu X., "The effects of filling patterns on the powder–binder separation in powder injection molding", Powder Technology, 256: 367-376, (2014).

Fu G., Loh N. H., Tor S. B., Murakoshi Y. and Maeda R., "Effects of Injection Molding Parameters on the Production of Microstructures by Micropowder Injection Molding", Materials and ManufacturingProcesses, 20(6): 977-985, (2005).


Tam Metin: PDF (English)

Refback'ler

  • Şu halde refbacks yoktur.



Politeknik Dergisi © 2014

P-ISSN 1302-0900    E-ISSN 2147-9429